

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Electrical Measurements (19EE0213)Course & Branch: B.Tech-EEE

Year &Sem: III-B.Tech& I-Sem.Regulation: R19

<u>UNIT –I</u>

MEASURING INSTRUMENTS

1. (a) Define the terms "Indicating instruments", "Recording instruments" and integrating Instruments". Give examples of each case. [L1][C01][6M]

- (b) List the advantages and dis advantages of PMMC type instruments. [L2][CO1][6M]
- 2. (a) Explain the construction and working of permanent magnet moving coil instruments . [L2[CO1][12M]

(b) A moving coil instrument gives a full -scale deflection of 10mA when the potential across its terminals is 100mV. Calculate shunt resistance for a full -scale deflection corresponding to 100 A. [L3][CO1][12M]

3. Design an Aryton shunt to provide an ammeter with the current ranges 1 A, 5 A and 10 A. The basic meter resistance is 50 ohm and full scale deflection current is 1 mA

[L3][CO1][12M]

4. What are the different types of damping systems? Explain them with neat diagram.

[L1][CO1][12M]

5. (a) How the electrical measuring instruments are classified? [L1][CO1][6M]

(b) Discuss about errors and compensations of measuring instruments. [L2][CO1][6M]

6 .(a)Derive an expression for the Deflecting torque in MI type instruments [L3][CO1][6M]

(b) List the advantages & disadvantages of MI type instruments [L1][CO1][6M]

- 7. (a) Describe the construction and working of attraction type MI instrument? [L2[CO1]][6M]
 - (b) A moving coil instrument has a resistance of 10 ohm and gives a full scale deflection When carrying 50mA. Show how it can be adopted to measure voltage upto 750 V and current of 100 A.
 [L3][C01][6M]
- 8. How do you extend the range of an Ammeter? Explain Aryton Shunt with diagram. [L1][CO1][12M]

9. Explain briefly Quadrant type Electrostatic voltmeter meter. Explain Heterostatic or Idiostatic Connections [L2][CO1][12M]

10. Explain the working of Kelvin Absolute Voltmeter. What are the advantages and disadvantages of Electrostatic Instruments? [L2][CO1][12M]

<u>UNIT-II</u>

DCBRIDGES and AC BRIDGES

1. (a) Draw the circuit diagram of a Wheatstone bridge and derive the condition for balance. [L4] [CO2][6M] (b) The four arms of Wheatstone bridge as follows: $AB = 5K\Omega$; BC = ?; $CD = 10\Omega$; $DA = 2K\Omega$. What should be the resistance in the arm for no current through the [L4] [CO2] [6M] Galvanometer? 2. Explain how insulation resistance of a cable can be measured with a help of Loss of charge method? [L2] [CO2] [12M] 3. (a) Draw the circuit of a Kelvin's double bridge used for measurement of low resistances. Derive the condition for balance. [L4] [CO2] [6M] (b) Explain classification of resistances. [L2] [CO2] [6M] 4. An ac bridge circuit working at 1 KHz has its arms as follows: Arm AB: 0.2 µf capacitance Arm BC: 500 ohm resistor Arm CD: unknown impedance Arm DA: 300 ohm resistor in parallel with 0.1µf capacitor Find R and L or C constants of the Arm CD considering it as a series circuit. [L4] [CO2] [12M] 5. Explain how Wien's bridge can be used for experimental determination of frequency. Derive the expression for frequency in terms of bridge parameters. [L2, L4] [CO2] [12M] 6. (a) Explain the features of De-Sauty'sBridge with a neat sketch. [L2] [CO2] [6M] (b) List the advantages and disadvantages of Maxwell's Bridge. [L1] [CO2] [6M] 7. Explain the construction and working of Anderson Bridge with suitable diagrams. [L2] [CO2] [12M] 8. Derive the general balance equation of DC and AC Bridges with suitable diagrams. What are the balance condition equations in polar and Rectangular forms? [L4] [CO2] [12M] 9. Explain substitution method and potentiometer method for measuring medium resistances. [L2] [CO2] [12M] 10. Explain how the inductance is measured in terms of known capacitance using Maxwell's bridge [L2] [CO2] [12M]

<u>UNIT – III</u>

MEASUREMENT OF POWER AND ENERGY

1. Explain the constructional details of electro dynamometer type wattmeter with a neat sketch. [L2] [CO3] [12M]

2. (a) Derive the torque equation for electro dynamo meter type wattmeter. [L4] [CO3] [6M]

(b) Explain stray magnetic field errors in electro dynamometer type wattmeter. [L2][CO3][6M]

3. (a) A single phase kilo watt hour meter makes 500 revolutions per kilo watt hour. It is found on testing as making 40 revolutions in 58.1 seconds at 5KW full load. Find the percentage error. [L4] [CO3] [6M]

(b) Explain driving system , moving system and braking system in a single phase induction type energy meter. [L2] [CO3] [6M]

4.(a) Explain the measurement of LPFand UPF. [L2] [CO3] [6M]

(b) Explain creeping and its compensation in 1-Ø induction type energy meter.[L2][CO3][6M]

5.(a) Explain the friction compensation in single phase induction type Energy Meter. [L2] [CO3] [6M]

(b). A 50A, 230 V meter on full load test makes 61 revolutions in 37 seconds . If the normal disc speed is 520 revolutions per Kwh , find the percentage error . [L4] [CO3] [6M]

6. Explain the construction of Two element and Three element dynamometer wattmeter. [L2] [CO3] [12M]

7. (a) Explain errors caused by vibration of moving system electro dynamometer type
wattmeter.[L2] [CO3] [6M]

(b) Explain the advantages and disadvantages of single phase Induction type Energy meter. [L2] [CO3] [6M]

8. Explain with a neat sketch the construction and working of a single-phase Dynamometer type [L2] [CO3] [12M]

9. a) Explain the working of 2 element energy meter with a neat diagram. [L2] [CO3] [6M]

b) Discuss the errors of single phase energy meter. [L2] [CO3] [6M]

10. With a neat construction diagram, explain the operation of single phase induction type energy Meters[L2] [CO3] [12M]

1. (a) Discuss C T and P T.

(b) Why secondary of C.T should not be open? [L1] [CO4] [6M] 2. Explain the construction of (i) Current transformer (ii) Potential transformer. [L2] [CO4] [12M] 3. Draw the phasor diagram of PT. Derive the expression for its transformation ratio and phase angle errors. [L3] [CO4] [12M] 4. Draw the equivalent circuit and phasor diagram of CT. Derive its transformation ratio. [L2] [CO4] [12M] 5. From the fundamentals, derive the expressions for actual transformation ratio and phase angle of the potential transformer. [L3] [CO4] [6M] 6. (a) what are the parameters to be considered in selecting a transducer for a particular application? [L1] [CO4] [6M] (b) Describe the working principle of thermocouples [L2] [CO4] [6M] 7. (a) Describe the construction and working of LVDT with a neat schematic [L2] [CO4] [6M] (b) Explain the advantages of electrical transducer [L2] [CO4] [6M] 8.(a) Discuss in detail about Thermistors. [2] [CO4] [6M] (b) Explain about inductive displacement transducers. [L2] [CO4] [6M] 9 Describe the method for measurement of temperature with use of a) RTD b) Thermistors c) IC Sensor [L2] [CO4] [10M] 10.a) what is a transducer? Explain classification of transducers[L1] [CO4] [6M] b) Describe the principle and operation of capacitive transducer for angular displacement measurement[L1] [CO4] [6M]

INSTRUMENT TRANSFORMERS AND TRANSDUCER

UNIT –IV

Page 4

[L2] [CO4] [6M]

<u>UNIT – V</u>

MAGNETIC MEASUREMENTS

1. Describe the construction and working of a moving coil ballistic galvanometer. [L4] [CO5] [12M]			
2. (a) Explain the construction and working principle of Flux meter with	a neat diagram. [L2] [CO5] [6M]		
(b) Determine leakage factor with flux meter.	[L1] [CO5] [6M]		
3 Explain the determination of B -H loop using method of reversals.	[L2] [CO5] [12M]		
4.(a) How do you measure leakage factor using Flux meter.	[L1] [CO5] [6M]		
(b) (b) compare flux meter and Ballistic Galvanometer	[L2] [CO5] [6M]		
5 . Describe the method for determination of B.H curve of a magnetic ma	tterial using:		
(i) Method of Reversals (ii) Six point method.	[L2] [CO5] [6M]		
6. Describe briefly how the following measurements can be made with the use of CRO			
(i) Frequency. (ii) Phase angle.(iii) voltage.	[L2] [CO6] [12M]		
7. (a) List the advantages & applications of C R O.	[L1] [CO6] [6M]		
(b) Draw a neat figure and explain the working of a C R O.	[L1, L2] [CO6] [6M]		
8. (a) Explain the functions of time base generator in a CRO	[L2] [CO6] [6M]		
(b) Draw the Lissajous patterns.	[L4] [CO6] [6M]		
9. (a) Discuss how the measurement of frequency and phase is done with	the help of CRO.		
	[L2] [CO6] [6M]		
(b) Describe the functions of attenuators in CRO.	[L2] [CO6] [6M]		
10. Explain the internal structure of CRT with a neat diagram	[L2] [CO6] [12M]		

10. Explain the internal structure of CRT with a neat diagram

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code :Electrical Measurements(18EE0212)Course & Branch: B.Tech-EEE

Year &Sem: III-B.Tech& I-SemRegulation: R18

<u>UNIT –I</u>

MEASURING INSTRUMENTS

1. The scale is not uniform in		[]
(A) M.I.Instrument	(B) M.C Instrument		
(C) Energy meter	(D) All		
2. An ammeter is a		[]
(A) Secondary instrument	(B) absolute instrument		
(C) Recording instrument	(D) integrating instrument		
3. The essential requirement of measuring inst	rument is	[]
(A) Deflecting torque	(B) controlling torque		
(C) Damping torque	(D) all		
4. Moving iron instrument can be used on		[]
(A)ac& dc both	(B) ac only		
(C) dc only	(D) half wave rectified ac		
5. Moving coil permanent magnet instruments	can be used on	[]
(A) Ac & Dc both	(B) ac only		
(C) dc only	(D) half wave rectified ac		
6. Which of the following are integrating instru	iments	[]
(A) Ammeter	(B) voltmeter	_	_
(C) wattmeter	(D) ampere hour and watt hour r	neters	
7. In majority of instruments damping is provid		[]
(A) Fluid friction	(B) spring		
(C) eddy currents	(D) all the above		
8. The degree of closeness of the measured value		[]
(A) Error	(B) Accuracy		
(C) Resolution	(D) Absolute error		
9. Shunts are used to extend the range of		[]
(A) Voltmeter	(B) Ammeter		
(C) wattmeter	(D) energy meter		
10. The scale is uniform in		[]
(A)M.I.Instrument	(B) M.C Instrument	_	_
(C) Energy meter	(D) All		
11. The function of series resistance in voltmet	er is to	[]
(A) Bypass the current	(B) increase the sensitivity of	he amme	ter
(C)Increase the resistance of ammeter	(D) none of the above		

	QUESTION B.	ANK 2	021
12. The torque which brings the pointer back to i	ts zero position is called	Г	1
(A)Controlling torque	(B) deflecting torque	L]
(C) Damping torque	(D) oscillation		
13. The deflection sensitivity of a CRO is given b		Г	1
(A) Volts/div	(B) Current/div	L]
(C) units/div	(D) All		
		г	1
14. The output of an analoginstrument can be interest. (A) T_{muc}		L]
(A) True	(B) False		
(C)Cannot be concluded	(D) None	г	1
15. An ammeter is a (A) Secondary instrument	(D) absolute in strange out	L]
(A) Secondary instrument	(B) absolute instrument		
(C) Recording instrument	(D) integrating instrument	г	1
16. In a portable instrument, the controlling torque (A) Service			1
(A)Spring	(B) gravity $(D) = a H = f (h = a h = a)$		
(C) Eddy currents	(D) all of the above	г	r
17. The function of shunt in an ammeter is to		L	,]
(A)by pass the current	(B) increase the sensitivity of the	he amme	ter
(C)Increase the resistance of ammeter	(D) none of the above	r	-
18. The torque which brings the pointer back to i	-	L]
(A)Controlling torque	(B) deflecting torque		
(C) damping torque	(D)oscillation		
19 method is used for measuring low resis		[]
(A) Kelvin double bridge	(B) Substitution		
(C) Loss of Charge (D)			
20. The spring material used in a spring control d]
(A) Should be non-magnetic	(B) Most be of low temperatur	e co-effi	cient
(C) Should have low specific resistance			
21. A <u>device prevents the oscillation of the r</u>	noving system and enables the latter	to reach	
itsfinal position quickly		[]
(A) Deflecting	(B) controlling		
(C) damping	(D) any of the above		
22. Which of the following properties damping	oil must possess?	[]
(A) Must be a good insulator			
(B) Should not have corrosive action up			
(C) The viscosity of the oil should not c	hange with the temperature		
(D) All of the above			
23. In a portable instrument, the controlling torqu	e is provided by	[]
(A)spring (B)	gravity		
(C) eddy currents	(D) all of the above		
24. The function of shunt in an ammeter is to		[]
(A)Bypass the current	(B) increase the sensitivity of the	he amme	ter
(C) Increase the resistance of ammeter	(D) none of the above		
25. The torque which brings the pointer back to its		Γ	1
(A) Controlling torque	(B) deflecting torque	L	L
(C) damping torque	(D)oscillation		
26. The essential requirement of measuring instru		[]
(A)Deflecting torque	(B) controlling torque	L	L
(C) Damping torque	(D) all the above		
27. Moving iron instrument can be used on	(2) un me ubbve	[1
(A)ac& dc both	(B) ac only	L	Ţ
ELECTRICAL MEASUREMENTS		Page	7

	QUESTION B	ANK 2	021
(C) dc only	(D) half wave rectified ac		
28. Moving coil permanent magnet instruments car		Г	1
(A)ac& dc both	(B) ac only	L	1
(C) dc only	(D) half wave rectified ac		
29. Which of the following are integrating instrum		ſ	1
(A) Ammeter	(B) Voltmeter	L]
(C) Wattmeter	(D) Ampere Hour and Watt Hour	r Meters	
30. In majority of instruments damping is provide]]
(A) Fluid friction	(B) spring	L	1
(C) eddy currents	(D) all the above		
31. The amount of deflection depends onof the		[]
(A)Sensitivity	(B) Resistivity	L	1
(C) Voltage	(D) None		
32 method is used for measuring high resista		[1
(A)Ammeter-Voltmeter	(B) Substitution	L	1
(C) Loss of Charge	(D) All		
33. The in its simplest form consists of 4 resi		Г	1
(A)Bridge	(B) Circuit	L	1
(C) capacitance	(D) Balance		
34. In the electrical instruments, cramped scale is o		[1
(A)gravitycontrol	(B)springcontrol	L	1
(C) Air friction	(D) None of these		
35. The best material for use for standard resister is		[1
(A)manganin	(B)aluminium	L	1
(C)nichrome	(D) platinum		
36. Electrostatic type instruments are primarilyuse		[1
(A)Ammeters	(B) wattmeter	L	1
(C) voltmeters	(D) Ohmmeter		
37. Which of the following types of instrument is a		г	1
(A)power factor meter	(B)energy meter	L	1
(C)wattmeter	(D) frequency meter		
38. Electrostatic type instruments are primarilyuse		г	1
(A)Ammeters	(B) wattmeter	L	1
(C) voltmeters	(D) Ohmmeter		
39. The scale is not uniform in	(D) Ommineter	Г	1
(A) M.I.Instrument	(B) M.C Instrument	L]
(C) Energy meter	(D) All		
40. Which of the following instruments indicate th		cal auan	tity heing
measured at the timeat which it is being measured		Jai yuali 1	ary being
(A) Absolute instruments]	
	(B) Indicating instruments		
(C) Recording instruments	(D) Integrating instruments		

<u>UNIT-II</u>

DC AND AC BRIDGES

(A)Z1Z4=Z2Z3(B) Z1Z2=Z3Z4(C)Z1Z3=Z2Z4(D) None2. De Sauty bridge is used to measure[]](A) Inductance(B)Capacitance(C)Frequency(D)Resistance3. The amount of deflection per unit current is called[]](A)Sensitivity(B)Resistivity(C)Power(D) Gravity
2. De Sauty bridge is used to measure []] (A) Inductance (B)Capacitance (C)Frequency (D)Resistance 3. The amount of deflection per unit current is called []] (A)Sensitivity (B)Resistivity
 (A) Inductance (B)Capacitance (C)Frequency (D)Resistance 3. The amount of deflection per unit current is called (A)Sensitivity (B)Resistivity
(C)Frequency(D)Resistance3. The amount of deflection per unit current is called (A)Sensitivity[]]
3. The amount of deflection per unit current is called []] (A)Sensitivity (B)Resistivity
(A)Sensitivity (B)Resistivity
(C)Power (D) Gravity
4. The sensitivity of Wheatstone bridge is given by []
(A)Deflection/Current (B) Deflection X current
(C) Deflection-current (D)none
5. An AC bridge is said to be balanced when _ flows through the galvanometer . []
(A)zero current (B) equal currents
(C) max current (D) none
6. Capacitance can be calculated withbridge. []
(A) Anderson bridge (B) de sauty bridge
(C) hay's bridge (D)Wein bridge
7. Which bride is used for the measurement of low resistance?
(A)Kelvin (B) Wheatstone
(C) hay's (D) Wagner ground bridge
8. Medium resistances in the range from []
(A)1 Ω to 0.1M Ω (B) 1 Ω to 0.5 M Ω
(C) 1Ω to $0.1k\Omega$ (D) $1.\Omega$ to $0.01M\Omega$
9. Bridge balance is obtained in De Sauty's bridge only if capacitors are []
(A)air type (B) gas type
(C) Vacuum type (D) Electrolyte
10. The four impedances are Zab=400L50, Zbc=800L-50, Zad=200L40
And Zcd=400L20. The bridge is said to be []
(A) Balanced (B) unbalanced
(C) cannot be determined (D) Damped
11. Balance condition for Wheatstone is given by []
(A) R1R2=R3R4 (B) R1R3=R2R4
(C)R1R4=R2R3 (D) NONE
12. The amount of deflection per unit current is called []
(A)Sensitivity (B)Resistivity
(C)Power (D) Gravity
13. Example of high resistance is []
(A)Shunt resistance (B)Insulation resistance
(C) Field winding (D) Armature resistance
14. Measurement of high resistance is done by []
(A)Ammeter-voltmeter (B)Wheatstone bridge
(C)Loss of charge method (D)All
15. The general balance condition for AC bridge is given by []

	QUESTION BAN	K	2021
$(\Lambda) 7174 - 7772$	(D) 7172-7274		
(A) Z1Z4=Z2Z3 (C)Z1Z3=Z2Z4	(B) Z1Z2=Z3Z4		
16. De Sauty bridge is used to measure	(D) None	г	1
(A) Inductance	(B)Capacitance	[]
(C)Frequency	(D)Resistance		
17. In an Anderson bridge, the unknown inductance		Г]
(A) Known inductance and resistance(B)		L	1
(C) Known resistance	(D) known inductance		
18. The sensitivity of Wheatstone bridge is given by		[]
(A) Deflection/Current	(B) Deflection X current	L	1
(C) Deflection-current	(D) none		
19.Examples of high resistances are		[]
(A)armature resistance	(B)ammeter shunt	L	1
(C) insulation	(D) lamp filament		
20. An AC bridge is said to be balanced when	· / I	Γ	1
(A)zero current	(B) equal currents	L	1
(C) max current	(D) none		
21. The balance condition of an (((A)C bridge is		[]
(A) Z1Z2=Z3Z4	(B) Z1Z4=Z2Z3	L	1
(C) $Z1Z3=Z2Z4$	(D) $Z1Z4=Z2/Z3$		
22. A in its simplest form consists of networ		d cii	rcuit.
	[]	
(A)Bridge circuit	(B) inductive circuit		
(C) capacitive circuit	(D) none		
23. All the resistances from 1 ohm and upto 0.1 Me	ohm are classified as	[]
(A) Low resistance	(B) medium resistance		
(C) high resistance	(D) unknown		
24. Capacitance can be calculated withbr	•	[]
(A)Anderson bridge	(B) de sauty bridge		
(C) hay's bridge	(D)Wein bridge		
25. The Wien bridge is used for the measurement of	. f	[]
(A) capacitance	(B) inductance		
	sistance		
26. If four impedances are $Zab = 400L50$ Zad = 20	0L40, Zbc= $800L-50$ and Zcd= $400L$.20,	then the
bridge is said to be	[]		
(A)Balanced	(B) unbalanced		
(C) under balanced	(D) over balanced		
27. Which of the following has low resistance?		[]
(A)Armature resistance of large generator	(B) 60W lamp resistance		
(C) Field winding of an alternator	(D) Insulation resistance of a machi	ne	
28. Error due to the resistance of leads and contact		_	
play a role in the measurement of re]	
(A)very low	(B) High		
(C) Medium	(D) cable wire	F	-
29. Which bride is used for the measurement of lo		L]
(A)Kelvin	(B) Wheatstone		
(C) hay's	(D)wagner ground bridge	-	-
30.Medium resistances in the range from		[]
(A)1 Ω to 0.1M Ω	(B) 1Ω to 0.5 M Ω		
(C) 1Ω to $0.1k\Omega$	(D) 1. Ω to 0.01M Ω		

	QUESTION BAI	NK 20)21
31.For series Rx-Cx circuit the Dissipation factor i	s given by	[]
(A)wCxRx	$(B)\omega Cx/Rx$	Ľ	1
$(C) \omega(Cx+Rx)$	$(D)\omega\sqrt{CxRx}$		
32. The sensitivity of wheatstone bridge is given by		[1
(A) Deflection/Current	(B) Deflection X current	Ľ	
(C) Deflection-current	(D)none		
33.Examples of high resistances are		[1
(A)armature resistance	(B)ammeter shunt	Ľ	
(C) insulation	(D) lamp filament		
34.AnAC bridge is said to be balanced when		ſ	1
(A)zero current	(B) equal currents	L	1
(C) max current	(D) none		
35.The balance condition of an (((A)C bridge is		[1
(A) Z1Z2=Z3Z4	(B) Z1Z4=Z2Z3	Ľ	1
(C) $Z1Z3=Z2Z4$	(D)Z1Z4=Z2/Z3		
36. A _ in its simplest form consists of network of		cuit.[1
(A)Bridge circuit	(B) inductive circuit	L	1
(C) capacitive circuit	(D) none		
37. All the resistances from 1 ohm and upto 0.1 M		[1
(A)low resistance	(B) medium resistance	L	1
(C) high resistance	(D) unknown		
38. Capacitance can be calculated withbr		[]
(A) Anderson bridge	(B) de sauty bridge	L	1
(C) hay's bridge	(D)Wein bridge		
39. The wien bridge is used for the measurement of		[1
(A)capacitance	(B) inductance	L	1
(C) frequency	(D) resistance		
40. If four impedances are $Zab=400L50$ $Zad=20$.20 . th	en the
bridge is said to be		,	••
		[1
(A) Balanced	(B) unbalanced	L	Г

(C) under balanced

(D) over balance

UNIT-III

MEASUREMENT OF POWER AND ENERGY

1. The frequency range of moving iron instruments (A)audiofrequencyband 20HZ to 20 KHZ	s is (B) Very low frequencyband 10H	[IZ to 30] KHZ
(C) lowfrequencyband 30HZ to 300 KHZ	(D)Power frequency 0 to 125 HZ		
2. The powerina $3-\phi$ four wire circuit can be measu		[1
(A) 2 wattmeter	(B)4 wattmeter	Ľ	
(C) 3 wattmeter	(D) 1 wattmeter		
3. Phantom loading for testing of energy meters is		[ı
(A) to isolate the current & potential circuit		L	L
(B) to reduce power loss duringtesting			
(C) For meters have low current rating			
(D) To test meters having a large current ra	ting forwhich loads may not be ave	ailable in	1
laboratory. This also reduces power losses during t			L
4. The powerina $3-\varphi$ four wire circuit can be measured.	-	[1
(A) 2 wattmeter	(B)4 wattmeter	L	l
(C) 3 wattmeter			
	(D) 1 wattmeter	г	1
5. Potential transformers are used in (A) A C summary many set	$(\mathbf{D}) \wedge \mathbf{C}$ walts as measurement]]
(A) A C current measurement	(B) A C voltage measurement		
(C) D C current measurement	(D)D C voltage measurement	г	1
6. Various adjustments in an energy meter include		[ļ
(A) light load or friction	(B) lag and creep		
(C) overload and voltage compensation	(D) all of the above	-	-
7. The power of a n-phase circuit can be measure		L	
(A) $(n - 1)$ wattmeter elements	(B) n wattmeter elements		
(C) $(n+1)$ wattmeter elements	(D) 2n wattmeter elements		
8. Average power over a cycle is given by		[]
(A) VI cos ϕ	(B) VI		
(C) VI sin ϕ	(D) $I^2 R$		
9. The instantaneous torque in the electrodynamon	neter watt meter is given by	[]
$(1) \cdot 2(d\mu)$	(\mathbf{p}) $(d\mu)$		
(A) $i_1^2 \left(\frac{d\mu}{d\theta} \right)$	(B) $i_1 i_2 \left(\frac{d\mu}{d\theta}\right)$		
(C) $i_1 i_2\left(\frac{\mu}{\theta}\right)$	(D) $i_1^2 i_2^2 \left(\frac{d\mu}{d\theta} \right)$		
$(\theta) = (\theta)$	$(-\gamma^{-1})^{-2}(d\theta)$		
10. In electrodynamometer wattmeter, moving coil	is the	[]
(A) Pressure coil	(B) current coil	_	-
(C) fixed coil	(D) none		
11. The control technique used in wattmeter is		[1
(A) Spring control	(B) gravity control	Ľ	
(C) air control	(D) any of above		
12. Compensation for inductance of a pressure coil	•	Γ	1
(A) A parallel capacitance	(B) a series capacitance	L	1
(C) Shunt inductance	(D) shunt conductance		
13. The number of revolutions made per kilowatt h]	
(A) Energy constant	(B) meter constant	1	
(C) power constant	(D) torque constant		
(C) power constant	(D) torque constant		

	QUESTION BANK	2	021
14. Slow revolutions are made by the disc under no	a load is known as	г	1
(A) Creeping	(B) integrating	L	1
(C) braking	(D) none		
15. How many number of measuring elements requ			
Electrical energy in a n conductor system	difed for measuring total	г	1
(A) n (B) r	2	L]
(C) 2 n	(D) n - 1		
16. Shading bands are used for	(D) II - I	г	1
(A) Reduce creeping	(P) friction companyation	L]
	(B) friction compensation		
(C) Light load compensation	(D) quadrature adjustment	г	1
17. Which one is most commonly used energy mete		L]
(A) Induction type	(B) mercury motor type		
(C) commutator meter type	(D) none	г	1
18. The meter used for measuring electrical power		L]
(A) kwh meter	(B) voltmeter		
(C) ammeter	(D) wattmeter	r	1
19. In dynamometer type of wattmeter, which coil		[]
(A) pressure coil	(B) current coil		
(C) pressure coil and current coil both	(D) none	_	_
20. The meter constant of energy meter is given by		Ĺ]
(A) rev/kw	(B) rev/kwh		
(C) rev/watt	(D) rev/wh		
21. The speed of energy meter can be controlled by		[]
(A) series magnet	(B) braking magnet		
(C) shunt magnet	(D) shading band		
22. The creeping error in single phase energy meter	can be minimized by	[]
(A) adjusting braking magnet			
(B) use of short circuited loops on the outer	limb of the shunt Magnet		
(C) drilling two holes in the disc on the opp	osite sides of the spindle		
(D) adjusting the shading band			
23.Wattmeter cannot be designed on the principle of	of	[]
(A)electrostatic instrument	(B)thermocouple instrument		
(C)moving iron instrument	(D)electrodynamic instrument		
24.In an energymeter braking torque is produced to		[]
(A)safeguard it against creep	(B)brake the instrument		
(C)bring energy meter to stand still			
(D)maintain steady speed and equal to drivi	ng torque		
25. The power of a n-phase circuit can be measured	0 1	ſ]
(A)(n - 1) wattmeter elements	(B)n wattmeter elements	L	-
(C)(n + 1) wattmeter elements	(D)2n wattmeter elements		
26.Two holes in the disc of energymeter are drilled		ſ]
(A)improve its ventilation	(B)eliminate creeping at no load	L	L
(C)increase its deflecting torque	(D)increase its brakingtcrque		
27. A Dynamometer type wattmeter responds to the		ſ	1
(A) Average value of the active power	(B) Average value of the reactive pov	L Wer	1
(C) Peak value of the active power	(D) Peak value of the reactive power		
28. Voltmeter should be of very high resistance so		г	1
		L]
(A) Its range is high (C) It may draw current minimum possible	(B) Its accuracy is high (D) Its sensitivity is high		
(C) It may draw current minimum possible 29. The internal resistance for milli ammeter must	(D) Its sensitivity is high	г	1
		1	

QUESTION BANK 2021 (A)High sensitivity (B) High accuracy (C) Maximum voltage drop across the meter (D) Minimum voltage drop across the meter 30. For an instrument the degree of repeatability or reproducibility in measurements is an alternative way of expressing its ſ 1 (A)Precision (B) Accuracy (C) Sensitivity (D) Linearity 31. The sensitivity of a measurement is a measure of (A) Change in instrument output when the quantity being measured changes by a given amount (B) Closeness of output readings for the same input when there are changes in the method of measurement (C) Ratio of output to the input (D) Closeness of output reading of instrument to the true value 32. In a ramp type DVM, the multivibrator determines the rate at which the 1 ſ (A) Clock pulses are generated (B) Measurement cycles are initiated (C) It oscillates (D) Its amplitude varies 33. In potentiometric type DVM, the adjustment of sliding contact is done by 1 ſ (A) A single phase servomotor (B) Two phase servomotor (C) Three phase servomotor (D) All of these 34. A dynamometerwattmeter is connected in ac circuit. The measured power is Γ 1 (C) Peak power (A) Rms power (B) average power (D) Instantaneous power 35. In two wattmeter method of 3 phase power measurement, when does one wattmeter read negative Γ 1 (A) when power factor is less than 0.5 lagging when power factor is greater than 0.5 lagging **(B)** when power factor is less than 0.5(C) (D) when power factor is unity 36. The household energy meter is] [(A) an indicating instrument (B) a recording instrument (C) an integrating instrument (D) none of the above 37.. In a low power factor wattmeter the pressure coil is connected 1 ſ (A) to the supply side of the current coil (B) to the load side of the current coil (C) in any of the two meters at connection (D) none of the above 38. In a low power factor wattmeter the compensating coil is connected ſ 1 (B) in parallel with current coil (A) in series with current coil (C) in series with pressure coil (D) in parallel with pressure coil 39. In a 3-phase power measurement by two wattmeter method, both the watt meters had identical readings. The power factor of the load was ſ 1 (A) unity (B) 0.8 lagging (C) 0.8 leading (D) zero 40. In a 3-phase power measurement by two wattmeter method the reading of one of the wattmeter was zero. The power factor of the load must be 1 (A) unity (B) 0.5 (C) 0.3 (D) zero

	QUESTION BAN	JK 20)21
UNI	IT-IV		
ΙΝΩΤΟΙΜΕΝΤ ΤΟ ΔΝΩΕΩΟ	MERS & POTENTIOMETER		
INSTRUMENT TRANSFOR	WERS & I OTENTIOWETER		
1. A potentiometer uses during the process of	of standardization.	[]
(A)Weston standard cell	(B) 10V cell		
(C) nokia cell	(D) big battery		
2. In ((A)C potentiometers the basic requirement is	s that both the voltages being measure	ed must	t be
equalwith respect to	[]	
(A)magnitude	(B) phase angle		
(C) both a and b	(D) frequency		
3. If the magnitude and phase angle of an unknown	n voltage are measured on different so	ales,th	ien it is
called potentiometer.		l	J
	(B) coordinate type AC potentiome	ter	
(C) AC-DC potentiometer	(D) DC potentiometer	. 1	
4. The process of adjusting the working current sup		tage dr	op
across a portion of sliding wire matches with the st	andard reference source is called	r	1
(A) mean atimation	(D) standardization	[]
(A) magnetization	(B) standardization		
(C) measurement	(D) range	г	1
5. A (D)C Potentiometer can be used for measuring	-	[]
(A) resistance (C) inductance (D) ca	(B) frequency apacitance		
6. If the inphase component and quadrature compo	-	\mathbf{n}	nitudo
of an unknown voltage is given by	hent are given by va and vb, then th		1
(A) $V=\sqrt{Va2+Vb2}$	(B) $v = \sqrt{Va2-Vb2}$	[]
$(A) \sqrt{-\sqrt{a^2+\sqrt{b^2}}}$ $(C) \sqrt{Va2xVb2}$	(b) $\sqrt{va2/vb2}$ (D) $\sqrt{va2/vb2}$		
7. After standardizing, the position of the rheostat,		[]
(A) should not be changed	(B) should be changed	L	1
(C) kept in maximum position	(D) kept in minimum position		
8. Voltbox is basically a device used for		[]
(A) extending the voltage range of the pote	netiometer	L	1
(B) measuring the current			
(C) measuring the voltage			
(D) measuring the power			
9. Instrument transformers are		[1
(A) potential transformers	(B) current transformers	-	-
(C) both $((A) \text{ and } ((B)$	(D) power transformers		
10. Standardization of potentiometer is done in ord		[]
(A) Accurate and Direct reading	(B) accurate		
(C) Precise	(D) accurate and precise		
11. A potentiometer may be used for		[]
(A) Measurement of resistance	(B) Measurement of current		
(C) calibration of ammeter	(D) All		
12. In order to achieve high accuracy, the slide wir	e of a potentiometer should be	[]
(A) as long as possible	(B) as short as possible		
(C) Neither a or b	(D) Thick.		
13. Potential transformers are used in		[]
(A) A C current measurement	(B) A C voltage measurement		
(C) D C current measurement	(D) D C voltage measurement		
14. Turns compensation is used in CT's primarily	for reduction of	[]
ELECTRICAL MEASUREMENTS		Page	15

	QUESTION BANI	K 20	21
(A) Phase angle error	(B) Both ratio & phase angle errors		
(C) ratio error, reduction in phase angle error			
15. The burden of CT's is expressed in terms of		[]
(A) secondary winding current	(B) VA rating of Transformer	-	-
(C) V, I, Pf of secondary winding circuit	(D) None of above		
16. What are the applications of potentio meter?		[]
(A) Calibration of volt meter	(B) Calibration of ammeter		
(C) Measurement of resistance	(D) all the above		
17. What is the phase angle between the windings	of a phase shifter?	[]
(A) 180° (B) 90° (C) 270° (D) 0	0		
18. If E s = standard cell voltage, $Ls = length$ taken	for standard cell voltage, L ac =		
Length taken for unknown e.m.f, what is unk	nown voltage?	[]
	-		
(A) $\frac{Es}{Lac} \times Ls$ (B) $\frac{Es}{Ls}$			
Euc Es			
(C) $\frac{Es}{Ls} \times \text{Lac}$ (D) Es × Lac			
Es			
19. If Potentiometer reading is V_R , standard cell	voltage and resistance are Vs and S.	What	t is the
unknown resistance?	[]		
V_{R}	Vs		
(A) $\frac{V_R}{V_S} \times S$	(B) $\frac{Vs}{V_{p}} \times S$		
	, R		
(C) $\frac{Vs}{s}$	(D) none		
S S			
20. The accuracy of the potentio meter depends on		[]
(A) standard cell	(B) deflection		
(C) both two	(D)none		
21. Potentiometer is basically a		[]
(A) Comparison instrument	(B) integrating instrument		
(C) Calibrating instrument	(D) indicating instrument		
22. The operating principle of potentiometer is bas		[]
(A) Magnetic effect	(B) heating effect		
(C) electromagnetic induction	(D) None of the above		
23. The emf of Weston standard cell is measured us	sing	[]
(A) Potentiometer method	(B) digital volt-meter		
(C) moving coil meter	(D) Moving iron meter		
24. Hot wore instruments are used to measure		[]
(A) Voltage (B) pressure (C) temperature	(D) length		
25. The principle of working Q meter is		[]
(A) Self-inductance	(B) mutual inductance		
(C) parallel resonance circuit	(D) Series resonance circuit		
26. The secondary of CT is never left open circuite	d because otherwise	[]
(A) heat dissipation in the core will be very	•		
(B) the core will be saturated and permanen			
(C) dangerously high emfs will be induced	in the secondary		
(D) all the above			
27. High ac voltages are usually measured with		[]
(A) magnetic voltmeter	(B) inductive voltmeter		
(C) potential transformers with voltmeters	(D) current transformers with voltm	eters	
28. The secondary of CT is never left open circuite		[]
(A) heat dissipation in the core will be very	large		
ELECTRICAL MEASUREMENTS		Page	16

	QUESTION BA	ANK 20	021
(B) the core will be saturated and permanen	tly magnetized rendering it useless		
(C) dangerously high emfs will be induced			
(D) all the above	in the secondary		
29. A P.T is basically a		ſ	1
(A) Step-up voltage transformer	(B) Step-down voltage transformed	er	-
(C) Auto transformer	(D) Wattmeter		
30. The no of turns on the primary of current trans	former is usually	[]
(A) 1 to 5	(B) 10 to 20		
(C) 20 to 100	(D) 100 to 500		
31. High ac voltages are usually measured with		[]
(A) magnetic voltmeter	(B) inductive voltmeter		
(C) potential transformers with voltmeters	(D) current transformers with vol	ltmeters	
32. The no of turns on the primary of current transf	former is usually	[]
(A) 1 to 5	(B) 10 to 20		
(C) 20 to 100	(D) 100 to 500		
33. It is required to measure the true open circuit e.	-]
(A) DC voltmeter	(B) Ammeter and a known resista	ince	
(C) DC potentiometer	(D) None of the above		
34. A voltage of about 200 V can be measured		[]
(A) directly by a DC potentiometer			
(B) a DC potentiometer in conjunction with			
(C) a DC potentiometer in conjunction with	a known resistance		
(D) none of the above			
35. A direct current can be measured by		[]
(A) a DC potentiometer directly			
(B) a DC potentiometer in conjunction with			
(C) a DC potentiometer in conjunction with	a volt ratio box		
(D) none of the above		-	-
36. To measure a resistance with the help of a poten		l	J
(A) necessary to standardise the potentiome			
(B) not necessary to standardise the potentio			
(C) necessary to use a volt ratio box in conj	unction with the potentiometer		
(D) none of the above		г	1
37. Basically a potentiometer is a device for		[]
(A) comparing two voltages	(B) measuring a current		
(C) comparing two currents	(D) none of the above	г	1
38. In order to achieve high accuracy, the slide wire (A) as large as passible	1	L]
(A) as long as possible	(B) as short as possible		
(C) neither too small not too large	(D) very thick	ly for th	2
39. To measure AC voltage by using an AC potenti	ionneter, it is desirable that the supp	-	e
potentiometer in taken (A) from a source which is not the same as	the unknown voltage]	
(A) from a source which is not the same as(B) from a battery	the unknown voltage		
(C) from the same source as the unknown v	oltage		
(D) any of the above	onage		
40. A potentiometer may be used for		[1
(A) measurement of resistance	(B) measurement of current	L	1
(C) calibration of ammeter	(D) all of the above		

ASUREMENTS		
etic materials are called	ſ]
(B) electrical measurements	L	-
(D) induction		
tional to	[]
(B) voltage		
(D) damping		
is proportional to	[]
6		
(D) square root of current through	the coi	1
[]		
• • •	iced by	springs
	F	-
	L]
$\mathbf{T}\mathbf{d} + \mathbf{T}\mathbf{c}$		
(D)Tc+T $_{D}$ =Tj +T d		
ying to accelerate the system is	[]
(B) deflecting torque		
(D) inertia torque		
e trying to retard the system is	[]
(B)deflecting torque		
(D)all the above		
[]		
e e		
	[]
· · · · · ·	-	-
	L]
(D) FETVM	г	1
$(\mathbf{D}) \mathbf{D} \mathbf{V} / 2 \mathbf{N}$	L]
(D) KK/4A	г	1
(\mathbf{P}) ourront/m ²	L]
	Г]
	L	1
	ſ]
	L	L
×	ſ]
(B) Demodulator	L	
(D)Oscillator		
	(D) induction tional to (B) voltage (D) damping is proportional to nt through the coil (D) square root of current through $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	ASUREMENTS etic materials are called [(B) electrical measurements [(D) induction [tional to [(B) voltage [(D) damping [is proportional to [(D) square root of current through the coil [(D) square root of current through the coil [(D) none [nstant is given by [Fd +T c [(D)Tc+ T $_D$ =Tj +T d ying to accelerate the system is [(B) deflecting torque [(D) accelerate the system is [(B) deflecting torque [(D)all the above [[] (B)Ballasticgalvano meter [(D)None [<i>ve</i> guides is [(B)bolometer [(D)cavity resonator [hest input impedance [(B) VOM [(D) FETVM [(B) large value of current [(D) large value o

inal position quickly	l]	
(A)deflecting	(B)controlling		
(C)damping	(D)any of the above		
7. Damping of the Ballistic galvanometer is made		[]
(A)get first deflection large	(B)make the system oscillatory		
(C)make the system critically damped	(D)getminimumovershoot		
8. Most sensitive galvanometer is		[]
(A)elastic galvanometer	(B)vibrationgalvanometer		
(C)spot ballistic galvanometer	(D) All		
9. The ballistic galvanometer is usually lightly date	-	[]
(A) It may oscillate	(B) It may remain stable		
(C) Amplitude of the first swing is large	(D) Amplitude of the first swing is	small	
0. B-H Curve is used to determination of:		[]
(A) Hysteresis loss	(B) Iron loss		
(C) Eddy current loss	(D) Both (A) and (B)		
1. Magnetic materials can be tested by:		[]
(A) Self-inductance bridge	(B) Cambell's mutual inductance b	oridge	
(C) AC potentiometer	(D) All the above		
2. A PMMC instrument can be used as a fluxmet	er by:	[]
(A) Using low resistance shunt	(B) Removing the control spring		
(C) Making the control springs of large mo	ment of inertia (D) Using a high seri	es resis	tanc
3. Open circuit fault in a cable can be located by:		[]
(A) Blavier's test	(B) Capacity test		
(C) Varley loop test	(D) Murray loop test		
4. A ballistic galvanometer is used to measure:		[1
(A) Charge	(B) Current	Ľ	
(C) Voltage	(D) Frequency		
25 factor is the ratio of total flux to the usef		ſ	1
(A) Form factor	(B) Leakage	Ľ	L
(C) Utility	(D) Dispersion		
6. Ballistic tests are used in magnetic measureme	· · ·	ſ	1
(A) Determination of flux density in specir		L	L
(B) Determination of hysteresis loop of a			
(C) Determination of B-H curve of a specin	-		
(D) All the above			
7. Two helical springs are used in a 'D' Arsonova	al meter movement because	[1
(A) It compensates for temperature changes		L	L
(C) It improves torque to weight ratio	(D) it controls the deflecting torque	effectiv	velv
8. Which of the set of torques is provided in defle	· · · · ·	Г	1
(A) Deflection and controlling	(B) Controlling and damping	L	Ţ
(C) Deflecting and damping	(D) Deflecting, controlling and dat	nning	
		rhung	1
9. Damping of the Ballistic galvanometer is made		L	1
(A) get first deflection large	(B) make the system oscillatory		
(C) make the system critically damped	(D) get minimum overshoot	г	r
0. If an instrument has cramped scale for larger v		[]
(A) square law(C) uniform law	(B) logarithmic law		
	(D) none of the above		

 (B) Filler transfer functions (D) All of the above sed electron beams (B) Anode (D) Electron gun. mallest input changes -scale to the power taken by the instruct of the change in input signal e output in the same form as the input]]
 (B) Filler transfer functions (D) All of the above sed electron beams (B) Anode (D) Electron gun. mallest input changes -scale to the power taken by the instruct of the change in input signal e output in the same form as the input ? 	[[rument]
 (D) All of the above sed electron beams (B) Anode (D) Electron gun. mallest input changes -scale to the power taken by the instruct of the change in input signal e output in the same form as the input ? 	[rument]
sed electron beams (B) Anode (D) Electron gun. mallest input changes -scale to the power taken by the instr o the change in input signal e output in the same form as the input ?	[rument]
 (B) Anode (D) Electron gun. mallest input changes -scale to the power taken by the instruct of the change in input signal e output in the same form as the input ? 	[rument]
D Electron gun. mallest input changes -scale to the power taken by the instr the change in input signal output in the same form as the input ?	rument	-
mallest input changes -scale to the power taken by the instr the change in input signal output in the same form as the input ?	rument	-
mallest input changes -scale to the power taken by the instr o the change in input signal e output in the same form as the input ?	rument	-
-scale to the power taken by the instr the change in input signal output in the same form as the input ?	t	1
the change in input signal output in the same form as the input?	t	1
e output in the same form as the input?	г	1
?	г	1
	L	1
0		-
(D) Ammeter.		
	ſ	1
-	L	1
· · · •	[1
	L	L
, , , , , , , , , , , , , , , , , , ,	1]
	L	1
	1]
	L	J
· · · ·		
· / I	1]
	L	1
	ſ]
	L	L
	 B) D'Arsonvalgalvanometer D) Ammeter. evacuated glass tube called B) Gun D) envelope. B) Digital volume meter D) Divider voltage meter B) Resistance D) Electric field cribed with the feature of B) Absence of frequency errors D) Small power loss. B) Base D) Electron gun ed electron beams B) Anode D) Electron gun. 	B) D'Arsonvalgalvanometer D) Ammeter. evacuated glass tube called [B) Gun D) envelope. [B) Digital volume meter D) Divider voltage meter [B) Resistance D) Electric field cribed with the feature of [B) Absence of frequency errors D) Small power loss. [B) Base D) Electron gun sed electron beams [B) Anode

Prepared by: K. Babu